
ISBN: 970-32-2137-8

      CONGRESO ANUAL DE LA AMCA 2004

Chaos Control for Power Converters

Ilse Cevantes1, IEEE member and Jose Alvarez-Ramirez2
1Seccion de Estudios de Posgrado e Investigacion, ESIME-CU Av. Santa Ana 1000, Col. San Francisco

Culhuacan, México D.F. 04430 MEXICO. email: ilse@calmecac.esimecu.ipn.mx.
2 Univesidad Autonoma Metropolitana Iztapalapa.CBI email: jjar@xanum.uam.mx

Abstract- In this work, the boost converter has
been taken as a benchmark to show how a sim-
ple control law can lead to chaos elimination
and equilibrium point stabilization. In this way,
we have shown that its possible to design a lin-
ear feedback controller that ensures the stabil-
ity and reliability of the system under the ac-
tion of current programmed control (CPC) or
voltage programmed control (VPC). The pro-
posed strategy has the advantages of being sim-
ple, efficient and easy to implement. Further-
more, the proposed controller does not require
any information about unstable periodic orbits
of the system. Performance and robustness of
the controller are evaluated via numerical sim-
ulations. Limitations of the proposed strategy
are discussed.

I. INTRODUCTION

Power converters constitute today, a main tool in en-
ergy processing. Recently, it has been shown that DC-
DC converters can exhibit several types of nonlinear
phenomena including bifurcation, quasiperiodicity and
chaos, under voltage and current mode control schemes
(see for example Barnejee and Verghese, 2001). Because
of the unpredictable and undesirable consequences of
chaos, control of chaos, and in particular control of
chaos in DC-DC converters, has become a topic of in-
terest.
There exist in the literature several approaches to

chaos control. The first chaos control strategy was re-
ported by Ott-Grebogi-Yorke (OGY) (1990). The main
idea is to use small perturbations to stabilize unstable
periodic orbits (UPO) which are abundant in chaotic
attractors. In this way, one of many UPOs is identified
as the control target and control action is directed to
stabilize the system around the specific orbit. Unfortu-
nately, the implementation of the OGYmethod requires
of the computation of the UPO which may be in gen-
eral a very complex task. To overcome this problem two
strategies has been proposed: Occasional proportional
feedback (OPF) introduced by Hunt (1991) and the so

called time-delayed autosynchronization (TDAS) sug-
gested by Pyragas (1992). OPF method (Hunt, 1991;
Petrov et al, 1992) is a one-dimensional version of OGY
and has the advantage of non-requiring the exact value
of the unstable periodic point or eigenvalues. On the
other hand, TDAS method involves a control action
formed with the difference between the actual state and
the state delayed of the system by one period. In this
way, the computation of the periodic orbit is avoided
but substituted by the exact period of the UPO. Given
the complexity of computing information about UPOs,
another kind of control strategies have been proposed.
In these control schemes, the control target is a desired
operating state, not necessarily an UPO (Huberman
and Lumer, 1990; Cicogna,1990; Braiman & Goldhirsh,
1991). Such controllers have the disadvantage of be-
ing constituted mainly by non-feedback stabilizers and
therefore, they are non-robust to system disturbances.
On the other hand, chaos control strategies of power
converters found in literature, are mainly direct appli-
cations of the chaos control methodologies given above
and do not exploit system particularities to accomplish
the stabilization task.

In this paper, the chaos control of DC-DC power con-
verters under CPC and VPC is investigated. It is shown
that is possible to design simple feedback controllers
to eliminate chaotic behavior in converters, so stability
and reliability of the system can be ensured. To this
end, we take the boost converter as a benchmark to
study the chaos generation and to develop a discrete-
time model for control purposes. The proposed strategy
has the advantage of being simple, easy to implement
and does not requires of any information about UPOs
or about location of equilibrium points. Mainly, the
contribution of this note, is to introduce a systematic
procedure to design simple control laws for a class DC-
DC power converters, that eliminate chaotic behavior
and stabilize an equilibrium set. The stabilizing task is
perfomed exploiting the particular dynamics of the con-
verter. The performance and robustness of the control
scheme in presence of parameter uncertainty is evalu-
ated via numerical simulations.
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This note is organized as follows. Section 2 describes
the converter dynamics under the current programmed
controller. Section 3 is aimed at develop a discrete-time
model of the system for analysis and control purposes,
and states formally the chaos control problem. Section 4
analize the conditions for the existence of fixed points,
Section 5 presents the controller design and provides
a rigorous proof of stability. Section 6 illustrates the
performance of the controller via numerical simulations
and finally, in Section 7 some conclusions are presented.
Notations. Throughout this paper, |.| denotes the
Euclidean norm, n·n denotes the induced matrix norm
and ∇xs(x) denotes the gradient (Jacobian) of the
scalar (vector) function s(x). For a given matrix A,
λ(A) denotes the matrix eigenvalues, respectively. The
symbol xTr denotes the transpose of vector x. The
symbol In represents the n-dimensional identity matrix.

II. PRINCIPLE OF OPERATION

As a first step towards addressing the problem of re-
ducing the adverse chaos effect in power converters, a
simple benchmark system is analyzed. In this way, con-
sider the boost converter shown in Figure 1, which con-
sists of a switch S, a diodeD, a capacitor C, an inductor
L and a load resistor R in parallel with the capacitor.
Current mode control is consider for analysis purposes,
however, the results derived for this case can also be
extended for voltage mode, as shown in following sec-
tions. In current programmed control, Switch S is con-
trolled by a feedback path that consists of a flip-flop
and a comparator. In the beginning, a clock pulse at
the Set input of the latch initiates the switching period,
causing the latch output Q to be high and turning on
the transistor (switch conducts). While the transistor
conducts, its current is equal to the inductor current
iL(t), this current increases depending the value of the
inductance L and the capacitance C. Any pulse arriv-
ing during this period of time is ignored. Eventually
the inductor current reaches the reference current Iref .
At this point, the controller turns the transistor switch
off, and the inductor current decreases for the remain-
der of the switching period. That is, when iL(t) = Iref
the comparator is triggered to reset the clock pulse. The
switch S is opened and remains open until the arrival of
the next clock pulse which triggers S to conduct again.
Summarizing, the current programmed control is con-
stituted of two switching criterions: 1) A unconditional
close (S conducts) every time period T, 2) A conditional
open (S does not conduct) whenever iL(t) ≥ Iref .
An advantage of the current programmed control is

that it makes use of the available current sensor infor-
mation to obtain simpler input-output dynamics. Fur-
thermore, transistor failures due to excessive switch op-

eration can be prevented simply by limiting the maxi-
mum reference current. This ensure that the transistor
will turn off whenever the switch current becomes to
large. On the other hand, current programmed control
is essentially an analogic technique, and their accuracy
and response speed are often better for current control
in highly demanding applications, than those based in
digital technology (Malesani, et al 1997).

As can be noticed, the topology of the converter is
changed according to the on or off state of the switch.
This results in a nonlinear time-varying system. There
are two particular useful modeling approaches for this
type of switched converters: Continuous-time averag-
ing approach and discrete time iterative map approach.
The averaging approach usually leads to continuous
non-linear equations that are more likely mathemat-
ical tractable, however, the averaging method is not
adequate for those cases when relative low frequency
excitation of the switch is used. On the other hand,
discrete-time maps offer more complete information on
the dynamical behavior of the system, since they can
reflect nonlinear phenomena across a wide spectrum of
frequency. Furthermore, the discrete time models can
be applied to a more general class of hybrid systems as
piecewise linear time variant systems. Given the argu-
ments above, in this paper we develop a discrete time
map of the system. Notice that since the switching ex-
hibited by the converter is modulated by a signal of
period T , a synchronous map of the system seems to be
the more adequate.

III. DISCRETE MODEL OF THE
CONVERTER

In order to derive a discrete time map of the boost
converter, let us assume that the circuit is evolving on
a continuous conduction mode, that is, the inductor
current never falls to zero. In this case, the equations
describing the on switching stage (S conducts) are two
uncoupled first order differential equations, one for the
inductor current and one for the capacitor voltage:

dv
dt
diL
dt

= AON
v
i

+
0
E
L

(1)

where AON
def
= diag − 1

RC , 0 . In this stage, the capac-
itor voltage decreases and the inductor current raises
linearly until the inductor current reaches the reference
current Iref . At that time, the switch is opened and the
converter evolves in a the non-conduction mode given
by

dv
dt
diL
dt

= AOFF
v
i

+
0
E
L

(2)

2
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whereAOFF
def
=

− 1
RC

1
C− 1

L
0

is an invertible and Hur-

witz matrix since R,C, L > 0. At this point, notice that
in view of the philosophy of current programmed con-
trol, there may be two typical behaviors:

Case a. The switch is turned off during the time T,
or

Case b. The switch remains closed since the current
condition iL(t) = Iref is not satisfied over the time
period T .

A. The off switching condition is satisfied

In this case, the switch is both turned on and off
during the time period T . The typical current waveform
is shown in Figure 2.a. Let δn be the fraction of time
that switch remains closed, then the state vector at the
off -switching time is the following:

x3n = Ψ(δnT )xn + βEδnT (3)

where x = [v, iL]Tr, βE = 0, E
L

Tr
, Ψ(δnT ) =

diag [ϕ, 1] , ϕ(δn)
def
= e−

δnT
RC and xj is the vector state

at the instant jT. Notice that since the dynamics of the
states are decoupled, the matrix Ψ(δnT ) is diagonal.
On the other hand, the converter at instant T is given
by

xn+1 = e
AOFF (1−δn)Tx3n+A

−1
OFF eAOFF (1−δn)T − I βE

In this way, the overall map xn → xn+1 is a composed
map given by

xn+1 = eAOFF (1−δn)T [Ψ(δnT )xn + βEδnT ]
+A−1OFF eAOFF (1−δn)T − I βE
def
= La(xn, δn)

(4)

Notice that the discrete function (4) is non-linear since
the parameter δn (duty-cycle) depends on the initial
conditions xn.

B. The switch remains on

In this case, the switch remains open since the current
does not reach the reference over a time period T . The
current waveform is shown in Figure 2.b.The discrete
map between the instant nT and (n+ 1)T is given by

xn+1 = Ψ(T )xn + βET
def
= Lb(xn) (5)

IV. EXISTENCE OF FIXED POINTS

Since fixed points are related with the equilibrium
of discrete systems, we explore the conditions for their
existence in this section. In this way, consider first the
Case b in section above (Figure 2.b). There exists a
fixed point in map (5) if

vn = e−
T
RC vn

in = in +
E
LT

(6)

Eq (6) cannot be satisfied unless T = 0. This situa-
tion would correspond to a non-operating converter and
therefore there are not fixed points. This situation lead
us to think that if a fixed point exists, it would be in
the composed map La(xn, δn) (4). This is not surpris-
ing, since the OFF-stage of the converter is necessary
to dissipate all the energy stored by the inductor in the
ON-stage. In this way, there is a fixed point if the fol-
lowing is satisfied

xn = eAOFF (1−δn)T [Ψ(δnT )xn + βEδnT ]
+A−1OFF eAOFF (1−δn)T − I βE

(7)

As remarked above, Eq. (7) is a nonlinear and trascen-
dental function. The solution of this equation is not an
easy matter and is probably that it has multiple solu-
tions. However, notice that for a given constant duty
cycle δ∗ the vector state is given by

xn = eAOFF (1−δ
∗)T [Ψ(δ∗T )xn + βEδ

∗T ]
+A−1OFF eAOFF (1−δ

∗)T − I βE
(8)

Eq. (8) is linear and therefore a sufficient condition
for the existence of a fixed point is that the matrix
I − eAOFF (1−δ∗)TΨ(δ∗T ) be invertible. Let us, for sim-
plicity, denote as αij the entries of matrix eAOFF (1−δ

∗)T .
Then the condition of invertibility can be translated as

1− ϕα11 − α22 + ϕ(α11α22 − α12α21) 9= 0 (9)

Restriction (9) is satisfied if AOFF is Hurwitz and 0 <
ϕ < 1, the proof can be found in later sections. Hence,
there exists a fixed point xn for every constant duty-
cycle δ∗. At this point, it is worth noticing that since
the erratic behavior of the converter is originated by
a random variable duty cycle, the use of a constant
pulse width would in principle eliminate chaos. In this
way, one may think in changing the reference current
to accomplish a constant duty-cycle operation. To this
end, let us notice that from Eq. (3), the restriction on
the reference output satisfies

yref = cΨ(δ
∗T )xn + cβEδ

∗T (10)

where y = cx and c = [0, 1]T for current programmed
control. Eq. (10) can be simplified to the following ex-
pression

Iref = in +
E
L δ
∗T (11)

3
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Notice that for every δ∗ there is one and only one Iref .
If Iref is defined as a control variable, Eq. (11) consti-
tutes a discrete control law that makes use information
of the inductor current at every instant nT. It can be
proved that control law (10) (alternately (11)) leads to
asymptotic stability of the closed-loop system. This re-
sult is formalized in following Section and constitutes
the main result of this note. As a preliminary step of
this proof, consider the following results.

Lemma 1 (Chen, 1999). Let P be a Hurwitz matrix,
then eP is Schur.

Lemma 2 Let eP ∈ R2 be a Schur matrix and Π =
diag[π, 1] with 0 < π < 1, then ePΠ is Schur.

Proof. Let pij denote the entries of eP , then its char-
acteristic equation is given by f1(λ) = λ2− (p11+p22)λ
+p11p22− p12p21. Since the matrix eP is Schur it satis-
fies the following (Chen, 1999)

1− p11 − p22 + p11p22 − p12p21 > 0
1 + p11 + p22 + p11p22 − p12p21 > 0

p11p22 − p12p21 < 1
(12)

furthermore since det(eP ) = etrace(P ) > 0, 0 <
det(eP ) < 1. Therefore, from (12) one can see that p11
satisfies

−2− p22 < p11 < 2− p22
On the other hand, the characteristic equation of ePΠ
is given by

f2(λ) = λ2 − (πp11 + p22)λ+ π(p11p22 − p12p21)

which is Schur if satisfies

1− πp11 − p22 + π (p11p22 − p12p21) > 0
1 + πp11 + p22 + π (p11p22 − p12p21) > 0

π (p11p22 − p12p21) < 1
(13)

Since 0 < π < 1 the last restriction in (13) is satisfied.
On the other hand, (13) implies that −2−p22π < p11 <
2−p22
π . Notice that since −2−p22π < −2 − p22, 2−p22π >

2 − p22 (13) is satisfied, leading us to conclude that
matrix ePΠ is Schur. This concludes the proof

Remark 1 From Lemma 2, one can also conclude the
existence of a fixed point in map (8). Since restriction
the satisfaction of restriction (13) guarantees the satis-
faction of (9).

V. MAIN RESULT

The main contribution of this note is presented below
in the following theorem

Theorem 3 Consider the converter dynamics under
current programmed control and the feedback expression
(10), then the closed-loop system is globally asymptoti-
cally stable about the equilibrium point

x = I − eAOFF (1−δ∗)TΨ(δ∗T ) −1 eAOFF (1−δ∗)TβEδ∗T
+ A−1OFF eAOFF (1−δ

∗)T − I βE
(14)

Proof. The closed loop equations are given by

xn+1 = eAOFF (1−δ
∗)TΨ(δ∗T )xn + eAOFF (1−δ

∗)TβEδ
∗T

+A−1OFF eAOFF (1−δ
∗)T − I βE

(15)
Notice that the stability of the discrete-time system (15)
is ensured if the matrix eAOFF (1−δ

∗)TΨ(δ∗T ) is Schur.
Since (1 − δ∗)T > 0, the result in Lemma 1 implies
that matrix eAOFF (1−δ

∗)T is Schur. From Lemma 2, one
can conclude that eAOFF (1−δ

∗)TΨ(δ∗T ) is also Schur,
since 0 < ϕ < 1. Therefore system (15) is globally as-
ymptotically stable about the equilibrium point (14).
The existence of such equilibrium is guaranteed since,
as shown before, matrix I − eAOFF (1−δ∗)TΨ(δ∗T ) is in-
vertible. This concludes the proof

Remark 2 Result in Theorem 3 establish that by defin-
ing the reference as in (10), any possible erratic behav-
ior of the system under current programed control is
eliminated. Even more, the result presented in this note
is also valid for voltage programmed control (VPC) just

by defining the output vector in (10) as c = [1, 0]
T
.

Remark 3 Although system stability under CPC or
VPC is ensured by feedback control law (10), the regula-
tion voltage problem is not necessary solved. However,
given that for every δ∗ there exists one and only one
fixed point x, one can follow the methodology given in
(Cervantes et al 2003, Alvarez et al. 2002) to design an
outer-loop in order to obtain a desired output voltage.

Remark 4 As stated before, Theorem 3 establish the
conditions to derive global asymptotic stability of the
converter under control law (10) to the fixed point (14).
At this point, one may wonder if this result is preserved
in presence of parametric uncertainty. Deriving a for-
mal stability result of this case is quite involved , how-
ever as we will see later, the control law (10) is able to
stabilize the system even if the parameters are uncer-
tain. This fact is illustrated via numerical simulations
in Section above.

Remark 5 Given the linear nature of the control law
(10) it can be easily implemented. In principle, such
circuit would require of an operational amplifier and a
”sample and hold” circuit.

4
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VI. NUMERICAL STUDIES

In order to illustrate the performance and robust-
ness of the proposed controller, numerical simulations
were carried on a boost converter with the following
parameters: R = 10Ω, L = 0.5mH,C = 4µF,= 35,
Iref = 7,Amp,T = 50µs and E = 5V . It has been
shown that for this parameters the boost converter dis-
plays erratic, presumable chaotic behavior (Barnerjee
and Verghese,2001). This fact is illustrated in Figure
3. On the other hand, in order test the efficacy of the
proposed controller, the following experiment was per-
formed. The converter is let to evolve freely and then at
time t = 0.0025s the feedback control law (10) is acti-
vated. Figure 4 shows the time evolution of the voltage
capacitor and the inductor current for this case and
δ∗ = 0.5. It can be noticed that the controller is able to
eliminate the erratic behavior, stabilizing the converter
to a fixed point. In this way, as stated in Theorem 3, all
trajectories x(t, x0) of the converter system are trapped
by an equilibrium set, stabilizing the system.
To guarantee the stability result in Theorem 3, the

control action (10) requires the knowledge of circuit pa-
rameters. At this point, one may wonder if the result
can be preserved in presence of parametric uncertainty.
As stated before, deriving a formal stability result of
this case is quite involved , however one may test its
robustness via numerical simulations. To this end, the
control law (10) was tested with a parametric uncer-
tainty of ±20%; that is, L = 0.6mH, and E = 4V.
The results are shown in Figure 5. It can be noticed
that the controller is able to stabilize the system even
in presence of parametric uncertainty and the system
trajectories are attracted to a fixed point.

VII. CONCLUSIONS

The main conclusion of this Letter is that by ana-
lyzing the dynamics of DC-DC converter under CPC
or VPC, it can be possible to design simple feedback
controllers to eliminate chaotic behavior. Advantages
of proposed controller are its simplicity, efficiency and
easy implementation. More specifically, we have used
boost converter as a benchmark to show how a suit-
able the control law can lead to chaos elimination and
equilibrium point stabilization. A salient feature of the
proposed control strategy is that information on the lo-
cation of equilibrium points is not required. In this way,
strategies similar to the presented in this paper could
be tested to reduce the adverse effects of chaotic con-
verters in other kind of DC-DC converters, like buck
and buck-boost.
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Figure 1. Boost converter
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Figure 2. Typical current waveforms of the converter
under CPC.
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Figure 4. Time evolution of the system with the
proposed controller.
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Figure 5. Time evolution of the system with the
proposed controller in presence of parametric

uncertainty.
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